

(ABS-SBCC-24053)

STUDY OF ROOF AND CEILING SURFACE TEMPERATURES IN COASTAL AREA (CASE STUDY: PASAR BENGKULU VILLAGE)

Panji Anom Ramawangsa (panji.anomr@unib.ac.id), Atik Prihatiningrum Department of Architecture, Faculty of Engineering, University of Bengkulu

International Symposium and Workshop on Sustainable Buildings, Cities, and Communities **"Building Low Carbon Future: Decarbonizing with Impact"**

Introduction

- 1. The roof, as the main component of the building envelope, is exposed to nearly **50-60% of solar radiation**.
- 2. The **transfer of solar heat** distributed from the roof influences the increase in building temperature so that it becomes the **largest source of room heat**.
- 3. A cool roof contributes to increasing solar reflection so it can help reduce the outside air temperature.
- 4. The Pasar Bengkulu Village settlement is on the coast of Bengkulu City, which is **100 m from the beach and at an altitude of 20 m** above sea level, representing a settlement in the coastal area. **Most houses use tin, metal, and asbestos.**

Method

Sample number	Roof area	Roofing material
House number 5 (Sofyan's house)	102 meter square	Tin roof
House number 9 (Aan's house)	92 meter square	Tin roof
House number 15 (Kamaludin's house)	270 meter square	Metal roof

Research / Invention Title / Design / Patented Product | Lead Researcher

Method

- The surface temperature measurements in this study were conducted from 25 to 27
 September 2023 before being coated with solar reflective roof paint from 06:00 to 18:00
- 2. 15 to 17 October 2023 after being coated with solar reflective roof paint from 06:00 to 18:00.
- The measurement points at houses number
 5,9 and 15 used Elitech RC attached to the roof and ceiling surface of the house for 12 hours per day

Result and Discussion

Data of roof surface temperature measurement

Period	Sample	Roof surface temperature (°C)		
		Mean	Max	Min
Pre- coated	Sofyan's house	38.3	55.4	21.8
	Aan's house	39.3	55.6	21.5
	Kamaludin's house	38.6	55.7	21.5
Post- coated	Sofyan's house	35.8	51.7	22.9
	Aan's house	36.3	51.7	23.2
	Kamaludin's house	29.5	47.1	23.0

There was an average decrease in roof surface temperature of 4.86°C (see table 2.)

Data of ceiling surface temperature measurement

Period	Sample	Ceiling surface temperature (°C)		
		Mean	Max	Min
Pre- coated	Sofyan's house	31.3	56.2	22.2
	Aan's house	28.2	34.6	24.2
	Kamaludin's house	29.2	34.2	25.7
Post- coated	Sofyan's house	28.0	42.2	23.2
	Aan's house	27.8	32.7	25.1
	Kamaludin's house	27.7	31.1	25.4

There was an average decrease in ceiling surface temperature of 1.73°C (see table 3.)

Conclusion

- 1. Building roofs that use **galvalum metal material have the most significant reduction** in roof surface temperature, **namely 9.1**°C.
- 2. Buildings without ceilings have the most significant reduction in surface temperature under the roof, namely 3.3°C compared to buildings that use ceilings made of plywood and polyvinyl chloride (PVC).
- 3. The measurement data shows that buildings that **do not use ceilings have a more** significant decrease in temperature under the roof than those with ceilings. This is because the distance from the floor to the roof is higher. After all, the space is higher.
- 4. However, residential room ceilings that use PVC material also experience a decrease in ceiling temperature of 1.5°C. This is because PVC has a conductivity value of k=0.090 W/mK, and the resistance. Materials that have low conductivity and transmittance values are suitable ceiling materials for air conditioning.

Reference

- [1] Rawat M and Singh R N 2022 A Study On The Comparative Review Of Cool Roof Thermal Performance In Various Regions *Energy Built Environ*. **3** 327–47
- [2] Yuliani S and Setyaningsih W 2018 Pengaruh Kinerja Thermal Pada Permukaan Atap Terhadap Efisiensi Energi Bangunan Tinggi Di Daerah Tropis *J. ARSITEKTURA* **16** 129–38
- [3] Boujelbene M, Boukholda I, Guesmi T, Amara M Ben and Khalilpoor N 2023 Solar Reflection and Effect of Roof Surfaces Material Characteristics in Heat Island Mitigation: Toward Green Building and Urban Sustainability in Ha'il, Saudi Arabia *nternational J. Low-Carbon Technol.* **18** 1039–1047
- [4] (CRRC) C R R C 2022 Understanding The Solar Reflectance Index: A Calculated Value 1–3
- [5] Nazaruddin, Teuku Z and Andi M 2020 Studi Kemampuan Penyerapan Panas pada Atap Rumah Seng Berwarna Terhadap Intensitas Matahari dalam Mengatasi Global Warming Int. J. Nat. Sci. Eng. 4 114–21
- [6] Ponni . M. and Baskar R 2015 Comparative Study Of Different Types Of Roof And Indoor Temperatures In Tropical Climate Int. J. Eng. Technol. **7** 530–6
- [7] Budhyowati M Y N, Rumbayan R, Musanif I, Tombeg B A and Makalew F P 2022 Efektifitas Penggunaan Plafon sebagai Pendingin Ruang Dalam *J. Tek. Sipil Terap.* **4** 142–52

