

Renewable Energy Development Through the Utilization of Palm Oil Mill Effluent (POME) in Indonesia

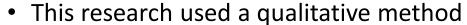
Indra Irawan¹, Eko Priyo Purnomo¹² (eko@umy.ac.id), Windhi Gita Prabawa¹, and Chin Fu Hung³

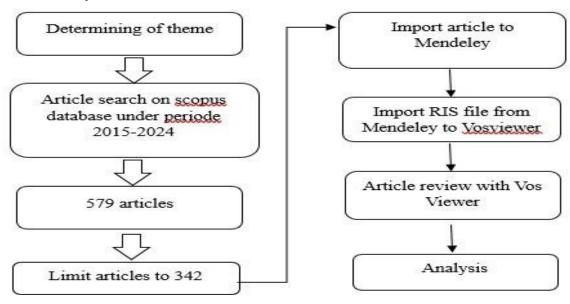
- ¹ Department of Government Affairs and Administration, Jusuf Kalla School of Government, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
- ² E-Governance and Sustainability Institute, Yogyakarta, Indonesia
- ³ Department of Political Science & Graduate Institute of Political Economy, National Cheng Kung University, Tainan City, Taiwan

Introduction

- This research aims to find out how to develop renewable energy through the utilization of Palm Oil Mill Effluent (POME) in Indonesia.
- POME is a byproduct of the palm oil industry, originating from the condensate of the sterilization or extraction process
- The Importance of POME can reduce dependence on conventional energy sources
- Indonesia's Potential

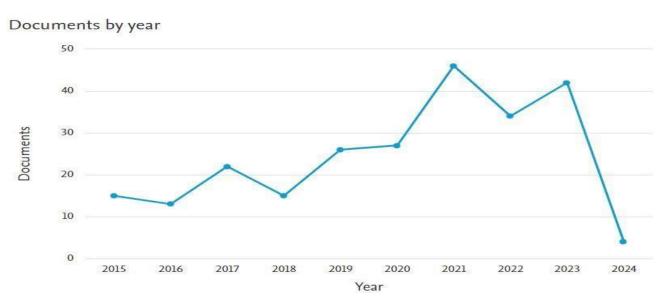
Stands as the largest producer and exporter of palm oil globally


The strategic utilization of POME as a renewable energy resource offers a valuable opportunity for the country


Indonesia can effectively tackle environmental challenges and contribute to the broader goal of sustainable energy development

Method

Collecting data from Scopus, keywords "Renewable energy, palm oil waste"


Using Vos viewer to analyze the data

Result and Discussion

• There are 342 articles published on the scopus data base, from 2015-2024

• Publications will continue to grow because topic of renewable energy development often discussed every year.

Result and Discussion

	Cluster	Keywords
	Cluster 1	Renewable energy resources, energy efficiency, energy production, fuel
1	Cluster 2	Environmentally sustainable, biomass conversion, carbon source, butanol
= \	Cluster 3	Biomass, greenhouse gas, electric generators, carbon emission

- Cluster 1, potential for energy resources (biodiesel),
 fuel for boat engines and agricultural machines
- Cluster 2, to achieve sustainability, the Indonesian government has organized initiatives (B30), and strengthened the capacity
- Cluster 3, shows that POME can be used for electric generation (POME-to-electricity)

Conclusion

- The results show that studies related to renewable energy development are important to be widely presented. Overall, the visualization results, present a comprehensive overview of the multifaceted roles of palm oil in the context of renewable energy.
- Highlights the function of palm oil as a versatile resource (fuel, electric generators)
- However, palm oil base sources have not produced adequate results, due to a a lack of policy, and technology utilized in the process

Reference

- [1] A. Rajani, Kusnadi, A. Santosa, and Saepudin, "Review on biogas from palm oil mill effluent (POME): Challenges and opportunities in Indonesia," 2019.
- [2] D. D. and Siti Baidurah, "Recent developments in biological processing technology for palm oil mill effluent treatment—A review," doi: https://doi.org/10.3390/biology11040525.
- [3] N. I. and C. P. L. Sharifah Mohammad, Siti Baidurah, Takaomi Kobayashi, "Palm Oil Mill Effluent Treatment Processes—A Review," vol. 9, no. 5, 2021, doi: https://doi.org/10.3390/pr9050739.
- [4] J. M. J. Safa Senan Mahmod, Mohd Sobri Takriff, Maha Mohammad AL-Rajabi, Peer Mohamed Abdul, Ahmad Anas Nagoor Gunny, Hemavathi Silvamany, "Water reclamation from palm oil mill effluent (POME): Recent technologies, by-product recovery, and challenges," vol. 52, 2023, doi: https://doi.org/10.1016/j.jwpe.2023.103488.
- [5] S. F. Salleh, "Transitioning to a sustainable development framework for bioenergy in Malaysia: policy suggestions to catalyze the utilization of palm oil mill residues," *Energy. Sustain. Soc.*, vol. 10, pp. 1–20, 2020.

